首页 网站地图

弦切角

2019-06-10 04:06:58??责任编辑:??来源:??点击数:

教学目标:1、使学生理解弦切角定义;2、初步掌握弦切角定理及其运用.3、通过运用弦切角定理,培养学生的推理论证能力; 教学重点: 正确理解弦切角定理,这一定理在以后的证明中经常使用.教学难点:弦切角定理的证明.学生不太容易想到把弦切角的(2)(3)种情况“转化”(1).教学中可提醒学生注意圆周角定理的证明方法.教学过程:一、新课引入:我们已经学过圆心角和圆周角,本课我们用同样的思想方法来学习弦切角.二、新课讲解:实际上,我们把圆周角∠BAC的一边AB绕顶点A旋转到与圆相切时,所成的∠BAC称弦切角.从数学的角度看,弦切角能分几大类?请同学们打开练习本,画一画.学生动手画,教师巡视,当所有学生都把三种情形的弦切角画出来时,教师可以打开计算机或幻灯给同学们作演示.按直角、锐角、钝角顺序分图形(1)、(2)、(3).教师指导学生给出弦切角的定义,并就图(1)中的弦切角猜想弦切角定理.指导学生完成证明,并得到推论.1.定义:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角.2.弦切角定理:弦切角等于它所夹的弧对的圆周角.3.弦切角定理推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等.(三)重点、难点的学习与目标完成过程.由圆周角定理我们知道,一条弧所对的圆周角无数个,但它们的度数相等.因此,一条弧的度数的大小,就决定了它所对的圆周角的大小.在猜想和证明弦切角定理时,教师可提示学生观察图7-71(1)中弦切角∠BAC所夹的弧半圆,半圆所对的圆周角是直角,故图7-71(1)中∠BAC等于它所夹弧对的圆周角.在把图7-71(2)和(3)向(1)转化时,图7-71(2)中要运用“直角三角形的两锐角互余”,图7-71(3)中要用到“圆内接四边形对角互补”.教师务必就图形把转化过程讲清楚,得到推论已是顺理成章的事情了.证明过程参照教材.

练习一,P.123练习1,如图7-72,直线AB和⊙O相切于点P,PC和PD弦,指出图中所有的弦切角.此题利用定义直接判定∠APC、∠APD、∠BPD、∠BPC.

练习二,P.123练习2,如图7-73,经过.⊙O上的点T的切线和弦AB的延长线相交于C.求证:∠ATC=∠TBC.

分析:欲证∠ATC=∠TBC,可证△ATC∽△TBC或角的其它性质,△ATC∽△TBC∠ATC=∠TBC.∠ATC=∠TBC∠ATC=∠TBC.此题应指导学生结合学过的知识,灵活运用弦切角定理.例1,P.122如图7-74,已知AB是⊙O的直径,AC是弦,直线CE和⊙O切于点C,AD⊥CE,垂足D.求证:AC平分∠BAD.

分析,如果连结BC,则∠BAC和∠DAC分别在两个三角形中,可通过三角形相似证得,也可通过直角三角形两锐角互余证得.如果连结OC,还可通过平行线的性质和切线的性质证得,教师板书本书证法,另外两种方法让学生在练习本上完成.证明:连结BC.AB是⊙O的直径 ∠ACB=90°∠B+∠CAB=90°AD⊥CE ∠ADC=90°∠DAC=∠CAB即AC平分∠BAD.三、课堂小结:让学生阅读教材P.121至P.123.从中总结出本课学习的主要内容:1.弦切角定义,除了由位置上定义弦切角外,还可从运动的角度,通过圆周角一边的旋转产生弦切角.2.弦切角定理,定理所述“夹弧”一定要使学生注意弧的端点,一定是构成弦切角的弦的两个端点,这是学生经常出错的地方.3.弦切角定理推论,推论运用的机会相对较少,使用时怎样来识别题设呢?一是两个弦切角夹等弧,二是两个弦切角夹同弧.四、布置作业:1.教材P.131中5、2;P.132中6.

上一篇: 下一篇:切线的判定和性质
弦切角 - 初三数学教案 - 查询谷 yabo亚博,亚博体育官网下载最奢华的游戏平台,亚博娱乐安全吗